Nummer INF3657 |
Titel Maschinelles Lernen |
Art der Vorlesung Wahlpflicht |
---|---|---|
ECTS | 3 | |
Arbeitsaufwand - Kontaktzeit - Selbststudium |
Arbeitsaufwand:
90 h Kontaktzeit:
30 h / 2 SWS Selbststudium:
60 h |
|
Veranstaltungsdauer | 1 Semester | |
Häufigkeit des Angebots | Im Wintersemester | |
Unterrichtssprache | Deutsch | |
Prüfungsform | Vortrag und Ausarbeitung |
|
Lehrform(en) | Proseminar | |
Inhalt | Maschinelle Lernverfahren spielen eine wichtige Rolle bei der Datenanalyse und Modellierung sowohl in der Industrie als auch in der Forschung. Diese Verfahren können Modelle aus Daten erlernen und diese auf unbekannte Instanzen anwenden. Beispiele für die praktische Anwendung sind z.B. Schrifterkennung, Bilderkennung, Warenkorbanalysen, Spamfilter, oder Eigenschaftsvorhersa- ge chemischer Verbindungen. Es werden grundlegende maschinelle Lernverfahren, ihre theoretischen Grundlagen und deren praktischen Anwendung vorgestellt. Zudem werden Validierungsstrategien und Parameteroptimerungsmethoden vorgestellt. |
|
Qualifikationsziele | Die Studierenden lernen neben den fachlichen Kompetenzen des Proseminars auch die wissenschaftliche Analyse eines Themas, Vorbereitung eines wissenschaftlichen Vortrags, Vortragsdurchführung, Kommunikation mit Zuhörern, kritischen wissenschaftlichen Diskurs und Verfassen einer wissenschaftlichen Abhandlung zu ihrem Seminarthema. |
|
Vergabe von Leistungspunkten/Benotung |
Lehrform
Status
SWS
LP
Prüfungsform
Prüfungsdauer
Benotung
Berechnung
Modulnote (%) |
|
Teilnahmevoraussetzungen | Es gibt keine besonderen Voraussetzungen. | |
Dozent/in | ||
Literatur / Sonstiges | Literatur wird in der Vorbesprechung angegeben. |
|
Zuletzt angeboten | nicht bekannt | |
Geplant für | derzeit nicht geplant | |
Zugeordnete Studienbereiche | INFM1510, MEINFM1510 |