Nummer BIOINF4382 (entspricht BIO-4382) |
Titel Machine Learning for Single Cell Biology |
Lehrform(en) Vorlesung, Übung |
---|---|---|
ECTS | 6 | |
Arbeitsaufwand - Kontaktzeit - Selbststudium |
Arbeitsaufwand:
180 h Kontaktzeit:
60 h / 4 SWS Selbststudium:
120 h |
|
Veranstaltungsdauer | 1 Semester | |
Häufigkeit des Angebots | Im Wintersemester | |
Unterrichtssprache | Englisch | |
Prüfungsform | Mündliche Prüfung |
|
Inhalt | Einzelzelltechnologien in Verbindung mit Ansätzen des maschinellen Lernens verändern die Biowissenschaften und das Verständnis von komplexen Krankheiten wie Krebs. Diese Vorlesung bietet eine Einführung in (1) die biologischen und medizinischen Fragen, die durch solche Einzelzellansätze auf einzigartige Weise beantwortet werden können, (2) modernste Einzelzelltechnologien wie hochdimensionale Massen-/Durchflusszytometrie, multi-omische und/oder räumliche Einzelzellsequenzierung/Bildgebung und (3) (un-)überwachte maschinelle Lern- und dynamische Modellierungsansätze zur Beantwortung vorheriger Fragen auf der Grundlage hochdimensionaler Einzelzelldaten. |
|
Qualifikationsziele | - Überblick über modernste Einzelzelltechnologien |
|
Vergabe von Leistungspunkten/Benotung |
Lehrform
Status
SWS
LP
Prüfungsform
Prüfungsdauer
Benotung
Berechnung
Modulnote (%) |
|
Teilnahmevoraussetzungen | Es gibt keine besonderen Voraussetzungen. | |
Dozent/in | Claassen | |
Literatur / Sonstiges | Programmierkenntnisse Python |
|
Zuletzt angeboten | Wintersemester 2022 | |
Geplant für | Wintersemester 2024 | |
Zugeordnete Studienbereiche | BIO-BIO, INFO-INFO, MEDI-APPL, MEDI-INFO, MEDZ-BIOMED, ML-CS, ML-DIV |