Nummer

ML-4501
Titel

Machine Learning Seminar
Lehrform(en)

Seminar
ECTS 3
Arbeitsaufwand
- Kontaktzeit
- Selbststudium
Arbeitsaufwand:
90 h
Kontaktzeit:
30 h / 2 SWS
Selbststudium:
60 h
Veranstaltungsdauer 1 Semester
Häufigkeit des Angebots Unregelmäßig
Unterrichtssprache Englisch
Prüfungsform

Vortrag und schriftlicher Projektbericht

Inhalt

In diesem Modul werden fortgeschrittene Ergebnisse und Ansätze in der Theorie und Anwendung des maschinellen Lernens sowie aktuelle Forschungsergebnisse auf dem Gebiet des maschinellen Lernens im Allgemeinen diskutiert.

Das konkrete Kursangebot im jeweiligen Semester entnehmen Sie bitte dem Vorlesungsverzeichnis in alma.

Qualifikationsziele

Die Studierenden lernen fortgeschrittene Ergebnisse der Theorie des maschinellen Lernens und ihrer Anwendungen kennen. Sie können zum Beispiel beurteilen, ob ein Algorithmus sowohl aus algorithmischer als auch aus statistischer Sicht gut konzipiert ist. Sie verstehen die grundlegenden Grenzen des maschinellen Lernens. Sie können aktuelle Forschungsfragen reflektieren. Die Studierenden sind in der Lage, sich durch umfassende Literaturrecherche Wissen über aktuelle Erkenntnisse anzueignen. Sie kennen die Bedeutung aktueller Themen im Bereich des maschinellen Lernens und sind sich bewusst, dass es noch viele offene Fragen gibt. Die Studierenden haben nicht nur ihre Studien- und Lesefähigkeiten verbessert, sondern auch ihre Fähigkeit zum selbständigen Arbeiten erweitert. Die Lehrmethode in diesem Seminar zielt darauf ab, das Selbstvertrauen der Studierenden zu stärken (mündliche Präsentation), ihre Kommunikationsfähigkeit zu verbessern und sie zu befähigen, Kritik anzunehmen (Diskussionsrunde im Anschluss an die Präsentation). Nach diesem Modul sind sie gut vorbereitet, um eine Masterarbeit im Bereich des maschinellen Lernens zu schreiben.

Vergabe von Leistungspunkten/Benotung
Lehrform
Status
SWS
LP
Prüfungsform
Prüfungsdauer
Benotung
Berechnung
Modulnote (%)
Seminar
S
o
2
3.0
H, R
30
b
100
Teilnahmevoraussetzungen Es gibt keine besonderen Voraussetzungen.
Dozent/in Alle Dozenten
Literatur / Sonstiges

Will be handed out in the course

Zuletzt angeboten Wintersemester 2022
Geplant für Wintersemester 2024
Zugeordnete Studienbereiche INFO-INFO, MEDI-APPL, MEDI-INFO, MEDZ-SEM, ML-CS, ML-DIV