Nummer

INFO-4177
Titel

Intelligent Systems II - Learning in Computer Vision
Lehrform(en)

Vorlesung, Übung
ECTS 6
Arbeitsaufwand
- Kontaktzeit
- Selbststudium
Arbeitsaufwand:
180 h
Kontaktzeit:
60 h / 4 SWS
Selbststudium:
120 h
Veranstaltungsdauer 1 Semester
Häufigkeit des Angebots Unregelmäßig
Unterrichtssprache Englisch
Prüfungsform

Klausur (mündliche Prüfung bei geringer Teilnehmeranzahl)

Inhalt

Graphische Modelle; Bayesian Belief Networks; Markov RandomFields; Conditional Random Fields; Lernen von strukturierten Variablen; Bayesianische Entscheidungstheorie; Loss-basiertes Lernen; Parameterlernen in Graphischen Modellen; Strukturierte Support Vector Maschinen; exakte und approximative Inferenzmethoden; Anwendungen in der Bildverarbeitung; Segmentierung; Human Pose Estimation; Bild entrauschen; Stereo; Objekterkennung

Qualifikationsziele

Die Studierenden lernen, wie komplizierte statistische Zusammenhänge mit Hilfe von graphischen Modellen dargestellt werden können. Dabei werden konkrete und aktuelle Probleme aus den Bereichen Bildverarbeitung und Bildverstehen gelöst. Diverse Lernmethoden erlauben es, Daten-getrieben Parameter automatisch einzustellen und die erreichte Performance zu evaluieren.

Vergabe von Leistungspunkten/Benotung
Lehrform
Status
SWS
LP
Prüfungsform
Prüfungsdauer
Benotung
Berechnung
Modulnote (%)
Vorlesung
V
o
2
3.0
MP
25
b
100
Übung
Ü
o
2
3.0
Teilnahmevoraussetzungen Es gibt keine besonderen Voraussetzungen.
Dozent/in Gehler, Lensch, MPI
Literatur / Sonstiges

Vorlesungsfolien werden bereitgestellt

Zuletzt angeboten Sommersemester 2020
Geplant für ---
Zugeordnete Studienbereiche INFO-INFO, MEDI-APPL, MEDI-INFO, MEDI-MEDI, MEDI-VIS, ML-CS, ML-DIV